STRUCTURLAM
CROSS
LAMINATED
TIMBER
DESIGN GUIDE
Introduction
Introduction 2
Carbon Footprint 2
Benets of CrossLam 2
Technical Approvals 2
Our Approach 2
Panel Characteristics 3-4
Appearance Classication 4
Connection Details 5-7
Load Tables 8-11
Table of Contents
Carbon Footprint
Cross Laminated Timber (CLT) has been manufactured in
Europe for over a decade. CLT is a revolutionary building
system that substitutes for concrete, masonry and steel in
some applications. Ideal for oors, walls, and roofs, CLT has
been described as the perfect structural solution.
Structurlam has created its own line of Cross Laminated
Timber called CrossLam. Using layers of locally sourced
softwood stacked at right angles and glued together,
CrossLam provides load distribution and dimensional
stability in all directions.
With its cross-layered construction, reduced carbon foot-
print, formaldehyde free adhesive and ready to assemble
system, CrossLam
TM
is the green choice for schools, health
care facilities public buildings, commercial buildings, and
multi-family housing.
The contents of this guide provide technical information to
allow architects and engineers to specify CrossLam.
The environmental benets of CrossLam speak for
themselves. Because CrossLam is made of wood, it
possesses a number of inherent positive environmental
characteristics common to all wood products.
According to life cycle assessment studies, these
include carbon storage, lower greenhouse gas emissions
during the manufacturing process, and an overall lighter
environmental footprint than non-wood materials.
CrossLam has many of the benets that other
building materials just don’t have.
Up to 6 times lighter than concrete. •
Dimensional stability and static strength in •
all directions.
Cost competitive against steel and concrete. •
Reduced construction time. •
Space creator, 1/3 thinner than concrete. •
Less demand for skilled workers on site. •
Benets of CrossLam
TM
Technical Approvals
CrossLam
TM
is certied to meet the requirements
of the Standard for Performance Rated CLT ANSI/
APA PRG 320.
Our Approach
Structurlam’s CrossLam has all the advantages of prefabricated
buildings in addition to the Structurlam Advantage:
Our state of the art manufacturing facility allows us to •
eciently produce large volumes of world class, certied
panels.
Our planer can nish smooth all 4 sides to expose panel •
surfaces and ensure a perfect t.
Our Design Team can provide fully engineered design •
solutions for oors, roof, walls, and all connection details.
Our Installation Partners can install any size of project. •
We manufacture panels using environmentally friendly •
resins that are free from formaldehyde and colour.
The Structurlam Team is here to make your project a •
success.
FLOOR SLAB COMPARISON CROSSLAM VS. CONCRETE
MAX
SPANS
(m)
CrossLam PANEL
THICKNESS (mm)
SLAB THICKNESS
REQUIRED (mm)
RATIO CLT/CONC
THICKNESS (%)
VIBRATION
CONTROLLED
SPAN (m)
CONCRETE SLAB
ONE END CONT
dx24 (m)
SLT3 99 150 66 3.5 2.4
SLT5 169 200 85 4.9 4.1
SLT7 239 260 92 6.2 5.8
SLT9 309 310 100 7.4 7.4
Text in red indicates CrossLam thickness advantage.
Architects and
Designers can
design with freedom.
Engineers receive a
strong, stable building.
General Contractors
receive a predictable
experence onsite.
Owners receive a green
building that is on
budget and on time.
3
Structurlam CLT Design Guide - Ver. 9
Panel Properties
CLT
Grade
(b)
Name Layers Depth
(mm)
Weight
(lbs) per
sq. ft
Weight
(kg) per
sq. metre
SLT3 3 layers 99 10.5 51.2
SLT5 5 layers 169 17.0 83.0
SLT7 7 layers 239 25.0 122.0
SLT9 9 layers 309 32.0 156.2
V2M1
Major Strength Direction Minor Strength Direction
F
b
S
e,0
(10
6
N-
mm/m)
EI
e,0
(10
9
N-
mm
2
/m)
GA
e,0
(10
6
N/m)
V
r,0
(kN/m)
F
b
S
e,0
(10
6
N-
mm/m)
EI
e,0
(10
9
N-
mm
2
/m)
GA
e,0
(10
6
N/m)
V
r,0
(kN/m)
16 735 7.0 32 2.40 34 7.5 12
37 2,968 15 44 21 883 15 34
67 7,559 22 56 48 3,360 23 46
105 15,351 30 68 84 8,282 30 58
CLT
Grade
Major Strength Direction Minor Strength Direction
f
b,0
(MPa)
E
0
(MPa)
f
t,0
(MPa)
f
c,0
(MPa)
f
v,0
(MPa)
f
s,0
(MPa)
f
b,90
(MPa)
E
90
(MPa)
f
t,90
(MPa)
f
c,90
(MPa)
f
v,90
(MPa)
f
s,90
(MPa)
V2M1
11.8 9,500 5.5 11.5 1.5 0.50 11.8 9,500 5.5 11.5 1.5 0.50
(a) Tabulated values are Limit States design values and not permitted to be increased for the lumber size adjustment
factor in accordance with CSA O86.
(b) The CLT grades are developed based on ANSI/APA PRG 320, as permitted by the standard using all visually graded
No. 2 SPF lumber in both major and minor strength directions.
Limit States Design (LSD) Bending Resistances
(a)
for Structurlam CrossLam
Specied Strengths and Modulus of Elasticity
(a)
for Structurlam CrossLam CLT
(a) Tabulated values are Limit States design values and not permitted to be increased for the lumber size adjustment
factor in accordance with CSA O86. The design values shall be used in conjunction with the section properties
provided by the CLT manufacturer based on the actual layup used in manufacturing the CLT panel (see Table
above).
Maximum Panel Size 3.0m x 12.2m (10’ X 40’)
Maximum Planed Panel Size 2.4m x 12.2m (8’ x 40’)
Maximum Thickness 309 mm
Production Widths 2.4m & 3.0m (8’ & 10’)
Panel Edges: ¼” chamfer on long edges
Moisture Content 12% (+/-2%) at time of production
Glue Specications Purbond polyurethane adhesive
Wood Species SPF No.1/No. 2, other species available upon request
Squareness Panel face diagonals shall not dier by more than 3.2mm
Straightness Deviation of edges from a straight line between adjacent
panel corners shall not exceed 1.6 mm
Dimensional Tolerances
Thickness: +/- 1.6mm (1/16”) or 2% of the CrossLam thickness whichever is greater
Width: +/- 1.6 mm (1/16”) per foot (305 mm) of CrossLam
width
Length: +/- 3.2 mm (1/8”) up to 6100 mm (20 ft) and +/- 3.2 mm (1/8”) for each
additional 6100 mm (20 ft) in length
Panel Properties
4
Visual
Intended use: • A structural CLT panel that is
used where one or both faces are left exposed.
Internal Fibre Layers:• SPF, NLGA Standard
Grading Rules “No. 2 Structural” characteristics.
Face Layer:• SPF, J” Grade (Japanese Grade),
Douglas-r (L3 Grade).
Allowable Fibre Characteristics
Shake and checks: • Several up to 2 feet long,
none through.
Stain:• Up to a max of 5% blue stain, heart
stain allowed.
Knots:• Firm & Tight (NLGA #2) .
Pitch Streaks:• Not limited.
Wane on Face:• None.
Side Pressure on Visual Face: • Yes.
Non-Visual
Intended Use: • A structural CLT panel that is used
where both faces are covered by another material.
Internal Fibre Layers:• SPF, NLGA Standard Grading
Rules “No. 2 Structural” characteristics.
Face Layer:• SPF, NLGA Standard Grading Rules “No. 2
Structural” characteristics.
Allowable Fibre Characteristics
Shake and checks: • Allowed, shall not exceed 3’ or ¼
the length.
Stain:• Allowed, not limited.
Knots: • Firm & Tight (NLGA #2).
Pitch Streaks: • Not limited.
Wane on Face: • Minimal.
S• ide Pressure on Faces: None.
Appearance Classication
Structurlam CLT Design Guide - Ver. 9
BASE POINT SOLE BRACKET
ONE ROW OF SELF TAPPING SCREWS ON
EACH SIDE OF JOINT INSERTED AT AN
ANGLE OF 15 DEGREES.
PLYWOOD SPLINE IS 25mm THICK x
130mm WIDE.
ONE ROW OF SELF TAPPING SCREWS.
CONFIRM 90mm OVERLAP.
SHEAR FORCE TRANSMISSION FROM
PANEL TO PANEL. SCREW SIZE AND
SPACING AS REQUIRED FOR APPLICATION.
CROSSLAM PANEL.
BENT STEEL ANGLE. TWO ROWS OF
CONCRETE SCREWS FOR SHEAR FORCE
TRANSMISSION.
CONCRETE COMPONENT (WALL, CEILING,
SLAB).
1
2
3
1
2
3
4
4
5
6
6
5
7
7
8
8
Connection Details - Floor/Roof Panel Joints
5
6
Connection Details - Panel to Panel
TYPICAL WALL TO FLOOR CONNECTIONS
CROSSLAM PANEL
OPTION FOR WALL INTERSECTION
JOINT SEALANT TYP
SELF TAPPING SCREW (Manufactured by: Assy,
SFS, Heco Topix, GRK, and Simpson Strong Tie).
MINIMUM 75mm LENGTH OF PENETRATION INTO
CONNECTED MEMBER.
BENT STEEL ANGLE. TWO ROWS OF SIMPSON
STRONG TIE ANGULAR RINGED NAILS STAGGER
EACH LEG.
FRAMING ANGLE. MINIMUM 1 AT EACH END OF
WALL AND MINIMUM 1 AT EACH DOOR OPENING.
1
2
3
4
5
6
7
1
2
3
4
5
6
7
7
Connection Details - Panel to Panel
Structurlam CLT Design Guide - Ver. 9
ROOF EXTERNAL WALL JOINT
ANGLE WALL JOINT CORNER WALL JOINT T-WALL JOINT
1
2
3
4
5
SELF TAPPING SCREW.
MINIMUM 75mm LENGTH OF PENETRATION
INTO CONNECTED MEMBER.
EFFECTIVENESS OF SCREW CONNECTIONS
DIMINISH FOR VERY SHALLOW ANGLES.
SCREWS ABSORB SHEAR FORCES PARALLEL
TO BEARING OR WIND SUCTION FORCES.
FOR INCREASED FORCES TOWARDS THE
INSIDE USE FULLY THREADED SCREWS.
1
2
3
4
5
Notes:
1. Material is S-P-F No. 1/No. 2 for all laminations.
2. Outer laminations are 32mm thick; inner laminations are 35mm thick.
3. Specied modulus of elasticity and strength in major strength direction:
E
0
= 9500 MPa; f
b,0
= 11.8 MPa; f
v,0
= 1.5 MPa; f
vr,0
= 0.5 MPa; f
c,0
= 11.5 MPa; f
t,0
= 5.5 MPa
(ref: Table 5.3.1A of CSA-O86-09).
4. Specied modulus of elasticity and strength in minor strength direction:
E
90
= 9500 MPa; f
b,90
= 11.8 MPa; f
v,90
= 1.5 MPa; f
vr,90
= 0.5 MPa;
(ref: Table A3 ANSI/APA PRG 320).
5. Dead load includes panel self-weight plus 0.5 kPa roong load.
6. Maximum span is governed by dead plus snow load deection limit of L/300.
7. All spans are assumed to be equal for multi-span panels.
8. Spans shown represent distance between the centerlines of supports.
9. Maximum spans shown are only to be used for preliminary design.
10. Engineer to ensure that L/300 deection limit is appropriate for intended use.
11. The following factors were used for calculations: K
D
= 1.0; K
S
= 1.0; K
T
= 1.0; K
H
= 1.0.
12. Shear stiness has been reduced by 50% to account for creep deformation.
13. Snow load is based on BCBC 2006 with the following factors:
I
s
= 1.0 for ULS; I
s
= 0.9 for SLS; C
w
= 1.0; C
S
= 1.0; C
a
= 1.0.
CrossLam Roof Panel Load Table
MAX. SPAN (mm) ROOF SNOW LOAD (kPa, unfactored)
PANEL
TYPE
SIZE
(mm)
1.1 1.6 2.2 2.9 3.3 8.5
SLT3 99 4450 4120 3820 3550 3420 2510
SLT5 169 6800 6360 5950 5570 5390 4050
SLT7 239 8920 8420 7920 7450 7220 5520
SLT9 309 10900 10330 9770 9230 8970 6940
SLT3 99 5400 4950 4550 4200 4050 2900
SLT5 169
Double span is governed by maximum panel length of 12,190mm
- design as simple span using table values above.
SLT7 239
SLT9 309
double
span
single span
Roof
4650
6095
1. Material is S-P-F No.1/No.2 for all laminations.
2. Outer laminations are 32mm thick; inner laminations are 35mm thick.
3. Specied modulus of elasticity and strength in major strength direction:
E
0
= 9500 MPa; f
b,0
= 11.8 MPa; f
v,0
= 1.5 MPa; f
vr,0
= 0.5 MPa; f
c,0
= 11.5 MPa; f
t,0
= 5.5 MPa
(ref: Table 5.3.1A of CSA-O86-09).
4. Specied modulus of elasticity and strength in minor strength direction:
E
90
= 9500 MPa; f
b,90
= 11.8 MPa; f
v,90
= 1.5 MPa; f
vr,90
= 0.5 MPa;
(ref: Table A3 ANSI/APA PRG 320).
5. Dead load includes panel self-weight plus 1.0 kPa ooring load.
6. Bold text indicates span governed by vibration; regular text indicates span governed
by dead plus live load deection limit of L/300.
7. All spans are assumed to be equal for multi-span panels.
8. Spans shown represent distance between the centerlines of supports.
9. Maximum spans shown are only to be used for preliminary design.
10. Engineer to ensure that L/300 deection limit is appropriate for intended use.
11. The following factors were used for calculations: K
D
= 1.0; K
S
= 1.0; K
T
= 1.0; K
H
= 1.0.
Floor
CrossLam Floor Panel Load Table
MAX. SPAN (mm) FLOOR LIVE LOAD (kPa, unfactored)
PANEL
TYPE
SIZE
(mm)
1.9
RESIDENTIAL
2.4
OFFICE/
CLASSROOM
3.6
MECHANICAL
ROOM
4.8
ASSEMBLY/
STORAGE
7.2
LIBRARY
SLT3
99 3490 3490 3220 2980 2650
SLT5
169 4920 4920 4920 4730 4220
SLT7
239 6200 6200 6200 6200 5720
SLT9
309 7370 7370 7370 7370 7180
SLT3
99 3700 3700 3650 3350 2920
SLT5
169 5150 5150 5150 5150 4650
SLT7
239
Double span is governed by maximum panel length of 12,190mm
- design as simple span using table values above.
SLT9
309
double
span
single
span
6095
CrossLam Floor Panel Load Table with 2” (50mm) Concrete Topping
MAX. SPAN (mm) FLOOR LIVE LOAD (kPa, unfactored)
PANEL
TYPE
SIZE
(mm)
1.9
RESIDENTIAL
2.4
OFFICE/
CLASSROOM
3.6
MECHANICAL
ROOM
4.8
ASSEMBLY/
STORAGE
7.2
LIBRARY
SLT3
99 3350 3230 2990 2800 2520
SLT5
169 4920 4920 4730 4450 4030
SLT7
239 6200 6200 6200 6020 5480
SLT9
309 7370 7370 7370 7370 6890
SLT3
99 3700 3700 3420 3180 2820
SLT5
169 5150 5150 5150 5050 4500
SLT7
239
Double span is governed by maximum panel length of 12,190mm
- design as simple span using table values above.
6095
SLT9
309
double
span
single span
9
Notes:
CrossLam Wall Panel Load Table (Axial Loading Only)
Panel
d (mm)
SLT3
99
SLT5
169
SLT7
239
SLT9
309
L (m)
Pr (kN/m)
2.0
385 699 949 1179
2.5
332 650 904 1134
3.0
276 599 861 1093
3.5
223 547 818 1054
4.0
178 494 773 1014
4.5
143 442 728 975
5.0
114 392 681 934
5.5
345 633 893
6.0
303 587 851
6.5
265 541 808
7.0
232 496 764
7.5
203 454 721
8.0
177 415 678
8.5
378 637
9.0
344 596
Notes:
1. P
r
= Φ F
cb
A K
zc
K
C
2. Material is S-P-F No.1/No.2 for all laminations.
3. Outer laminations are 32mm thick; inner laminations are 35mm thick.
4. Specied modulus of elasticity and strength in major strength direction:
E
0
= 9500 Mpa; f
b,0
= 11.8 Mpa; f
v,0
= 1.5 Mpa; f
vr,0
= 0.5 Mpa; f
c,0
= 11.5 Mpa; f
t,0
= 5.5 Mpa
(ref: Table 5.3.1A of CSA 086-09).
5. Specied modulus of elasticity and strength in minor strength direction:
E
90
= 9500 Mpa; f
b,90
= 11.8 Mpa; f
v,90
= 1.5 Mpa; f
vr,90
= 0.5 Mpa
(ref: Table A3 ANSI/APA PRG 320).
6. Wind load has not been included.
7. Where the Pr values are not given, the slenderness ratio exceeds 50 (maximum permitted; CSA 086-09).
8. The following factors were used for calculations: K
D
=0.65; K
S
=1.0; K
T
=1.0; K
H
=1.0; K
e
=1.0.
9. Eccentricity of axial load has not been included.
10. Table values are to be used for preliminary design only.
Wall
CrossLam In-Plane Shear Loading
Panel
d (mm)
SLT3
99
SLT5
169
SLT7
239
SLT9
309
Vr (kN/m)
95 190 285 380
Notes:
1.
Computed values based on “In-Plane Shear Capacity and Verication Methods” by Prof. G. Schickhofer,
University of Graz.
2. Material is S-P-F No. 1/No. 2 for all laminations.
3. Outer laminations are 32mm thick; inner laminations are 35mm thick.
4. Specied modulus of strength: f
v,clt,k
= 5.0 Mpa; f
T,clt,k
= 2.5 Mpa
ref: “BSPhandbuch Holz-Massivbauweise in Brettsperrholz” Technical University of Graz).
5. The following factors were used for calculations: k
mod
= 0.8; y
m
= 1.25.
6. Minimum width of wood used in lay-up is 89mm.
7. Values are for SLT panel only, not for shear connectors.
8. Table values are to be used for preliminary design only.
Shear Wall and Diaphragm Applications
11
Structurlam CLT Design Guide - Ver. 9
www.structurlam.com
BC Interior, AB, SK, MB Pacic Canada & International
Dave Gardner Colin Chornohus, AScT.
2176 Government St. 200-9292 200th St.
Penticton, BC Langley, BC
Canada V2A 8B5 Canada V1M 3A6
t: 250 492 8912 t: 604 455 0709
f: 250 492 8906 f: 604 882 7300
ON, QC, Atlantic Canada & Residential USA Commercial
Ron McDougall Kris Spickler, P.E.
2176 Government St. 4120 Douglas Blvd. #306-502
Penticton, BC Granite Bay, CA
Canada V2A 8B5 USA 95746
t: 250 492 8912 t: 916 797 5588
f: 250 492 8906 f: 866 801 1654
e: [email protected] e: kris@structurlam.com
STRUCTURLAM
Structurlam CLT Design Guide - Ver. 9
printed in Canada